Although this site was up over 25 years it now soon will be shut down due to administrative reasons.
It will be further available on my new home page www.yvesedel.de


The check matrix of a [82,73,5]4 (dual distance 44).

For more information see Extending and lengthening BCH-codes.

1000000001332303003323103323022031221033311121232222230232302213220332232033032313
0100000001201133303011213011320232303130020033311000013211132032232123230220122032
0010000003301311332113223113123000323331231310210011121200312332221221313212213320
0001000003111333131003020103303323121311310222100110032001230301113211330320033110
0000100000311133313100302010330332312131131022210011003200123030300013322300312230
0000010003210311333102332013022010322231320211300110020201213232333200122030211212
0000001003100233131102131013313222121201301332011100122101320213130001003103132011
0000000101022320310233310222313313033113221012033332222022230233120010011301231000
0000000013323030033231033230220312210333111212322222302323022110131101123120032122

The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.


| Some codes | home |